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Abstract 
The escalating frequency and severity of natural and human-induced disasters demand rapid, data-

driven decision-making frameworks that can adapt to complex and uncertain environments. This study 

presents an Artificial Intelligence (AI)-enhanced Decision Support System (Artificial Intelligence (AI)-

Decision Support System (DSS)) designed to improve disaster management and response through the 

integration of multi-source data and interpretable machine learning models. The system employs a 

hybrid deep-learning architecture combining convolutional and transformer-based networks for spatial-

temporal analysis, supported by a Bayesian uncertainty module to enhance model transparency and 

trust. Data from the Copernicus Emergency Management Service, USGS ShakeMap, and EM-DAT 

databases were used to evaluate the Artificial Intelligence (AI)-Decision Support System (DSS) across 

flood and earthquake scenarios. Statistical analysis revealed substantial performance improvements 

over traditional systems, including a 9.3% increase in flood segmentation accuracy, a 5.4% 

improvement in building-damage classification AUC, and a 10.8-percentage-point gain in decision 

accuracy. The mean time-to-decision was reduced by 11.3 minutes, while user trust increased by 1.24 

points on a seven-point Likert scale. Calibration analysis indicated lower Expected Calibration Error 

values, reflecting improved reliability in predictive confidence. The results validate the hypothesis that 

human-in-the-loop, explainable Artificial Intelligence (AI) architectures significantly enhance both 

decision efficiency and user confidence in high-stakes disaster environments. Furthermore, the study 

proposes actionable recommendations, including the integration of explainable Artificial Intelligence 

(AI) dashboards, the development of data-sharing frameworks, and Artificial Intelligence (AI) 

capacity-building initiatives for emergency personnel. These findings establish that Artificial 

Intelligence (AI)-driven, ethically governed decision-support tools can accelerate disaster response 

while ensuring transparency, accountability, and operational trust among multidisciplinary response 

teams. The proposed Artificial Intelligence (AI)-Decision Support System (DSS) framework represents 

a scalable, adaptive, and interpretable model for the next generation of technology-assisted disaster 

management systems.  

 

Keywords: Artificial Intelligence (Artificial Intelligence (AI)), Decision Support System (Decision 

Support System (DSS)), Disaster Management, Explainable Artificial Intelligence (AI) (XArtificial 
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Intelligence (AI) Collaboration, Machine Learning, Predictive Modeling, Situational Awareness, Real-

Time Decision-Making, Data Fusion, Uncertainty Quantification, Operational Trust, Risk 

Communication, Crisis Informatics, Bayesian Deep Learning, Emergency Response, Multi-Hazard 
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Introduction 
Disasters spanning floods, cyclones, earthquakes, wildfires, landslides, technological 

accidents and complex emergencies continue to escalate in frequency and impact under a 

warming climate and intensifying exposure, challenging the full disaster-risk-management 

cycle from preparedness to recovery [1-4]. Global situation reports show hundreds of hazard-

related disasters annually with tens of thousands of deaths and extensive economic losses, 

underscoring persistent risk drivers and capacity gaps despite international frameworks such 

as the Sendai Framework for Disaster Risk Reduction and national response doctrines [1, 2, 5-

8]. At the same time, geospatial Earth-observation constellations, in-situ IoT sensors, and 

high-velocity digital exhaust (e.g., social media) offer unprecedented data volumes for 

situational awareness, early warning, rapid mapping, and needs assessment yet these data 

streams are heterogeneous, noisy, and unevenly trusted in operations [7-13]. Artificial 

intelligence (Artificial Intelligence (AI))-enhanced decision support systems (Decision 

Support System (DSS)) have emerged to fuse multi-source data, forecast hazard evolution,  
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automate damage and impact estimation, and provide 

decision recommendations with quantified uncertainty; 

exemplar operational and research systems leverage satellite 

rapid mapping, seismic shaking products, causal-inference 

pipelines, and deep learning for building-damage and flood 

segmentation [9-12, 14-19]. However, persistent challenges limit 

uptake: model generalizability across geography and 

hazards, data bias and label scarcity, latency and 

interoperability with command-and-control tools, and 

critically explainability and human trust in “black-box” 

outputs for safety-critical decisions [4, 14-16]. Problem 

statement: How can Artificial Intelligence (AI)-enhanced 

Decision Support System (DSS) be architected and 

validated to improve the accuracy, timeliness, robustness, 

and trustworthiness of disaster decisions while remaining 

transparent, auditable, and aligned with multi-agency 

doctrines? Objectives: (i) specify a modular Artificial 

Intelligence (AI)-Decision Support System (DSS) 

architecture that integrates real-time data fusion 

(EO/IoT/social), predictive analytics, and explainable 

interfaces consistent with international and national Disaster 

Risk Management (DRM) frameworks; (ii) evaluate 

performance across representative flood and earthquake 

scenarios using established geospatial products (e.g., Rapid 

Mapping, ShakeMap) and state-of-the-art deep models for 

damage/flood mapping; (iii) assess human-Artificial 

Intelligence (AI) teaming, trust, and decision convergence 

among incident managers under time pressure; and (iv) 

propose governance and M&E indicators for sustained 

operations [1, 5-13, 15-21]. Hypothesis: An interpretable, human-

in-the-loop Artificial Intelligence (AI)-enhanced Decision 

Support System (DSS) that couples multi-modal data fusion 

with explanation and uncertainty communication will 

significantly improve decision accuracy, response latency, 

and user trust versus conventional Decision Support System 

(DSS) or human-only baselines in multi-hazard contexts [4, 

14-16, 18-21]. 

 

Material and Methods 

Materials 

This study utilized a multi-modal dataset derived from 

open-access and institutional sources to evaluate the 

performance and applicability of Artificial Intelligence (AI)-

enhanced Decision Support Systems (Decision Support 

System (DSS)) in disaster management. The primary data 

sources included Earth Observation (EO) satellite imagery 

from the Copernicus Emergency Management Service 

(CEMS) Rapid Mapping archives [9, 21], seismic and ground-

shaking data from the United States Geological Survey 

(USGS) ShakeMap repositories [10, 11, 20], and event-level 

disaster impact data from EM-DAT and the Centre for 

Research on the Epidemiology of Disasters (CRED) [5, 6]. 

Supplementary data on population density, critical 

infrastructure, and meteorological inputs were obtained 

from the World Health Organization (Health-EDisaster Risk 

Management (DRM)) [7], FEMA’s National Response 

Framework (NRF) [8], and IPCC’s AR6 datasets [3, 4]. Social 

media data streams (Twitter and local disaster alert 

networks) were collected using API-based keyword 

monitoring, following ethical data-use protocols [12]. All 

datasets were preprocessed using geospatial normalization, 

atmospheric correction, and resampling to 10 m spatial 

resolution where applicable [15-18]. A multi-layer data cube 

was constructed integrating optical, SAR, and ancillary 

geospatial layers to facilitate Artificial Intelligence (AI)-

based feature extraction and predictive modeling. 

Computational experiments were conducted using a GPU-

enabled cloud environment (NVIDIA A100, 80 GB 

VRAM), ensuring reproducibility and performance 

consistency across trials. All modeling and analytical 

workflows adhered to the UNDRR Sendai Framework’s 

data governance principles and FArtificial Intelligence 

(AI)R data standards for disaster research [1, 2]. 

] 

Methods 

The methodological framework was divided into three 

phases: (1) Artificial Intelligence (AI) Model Design and 

Integration, (2) Evaluation and Validation, and (3) Human-

Artificial Intelligence (AI) Interaction Testing. In Phase 1, a 

hybrid deep learning model integrating a convolutional 

neural network (CNN) for spatial data interpretation and a 

transformer-based architecture for temporal data analysis 

was developed [15-17]. The model leveraged pre-trained 

weights from the xBD and flood segmentation datasets to 

ensure domain transferability [15, 17, 18]. A Bayesian 

uncertainty quantification layer was embedded to generate 

probabilistic outputs, enhancing interpretability [14, 16]. In 

Phase 2, the trained model was tested across multiple 

disaster scenarios floods (India, 2018; Italy, 2022) and 

earthquakes (Turkey, 2023) using performance indicators 

such as accuracy, precision, recall, and F1-score. Ground 

truth validation was performed using Copernicus and 

ShakeMap event data [9-11, 20, 21]. In Phase 3, a controlled 

simulation was designed to evaluate human decision-

making under Artificial Intelligence (AI)-assisted and 

traditional Decision Support System (DSS) conditions. 

Participants included trained emergency managers and data 

analysts from local disaster-response agencies. Trust, 

usability, and decision latency were measured using 

structured questionnaires and interaction logs [13, 14, 19]. 

Statistical significance of model improvements was assessed 

using paired t-tests and ANOVA at a 95% confidence level. 

The methodological approach followed ethical guidelines 

for Artificial Intelligence (AI) transparency, accountability, 

and explainability in safety-critical applications [14, 19]. 

 

Results 

Overview 

Across 20 events (floods = 12; earthquakes = 8), the 

Artificial Intelligence (AI)-enhanced Decision Support 

System (DSS) consistently outperformed the baseline 

Decision Support System (DSS) on task-level model quality 

(flood segmentation F1; building-damage AUC), decision 

accuracy, response latency, and user-reported trust, with 

statistically significant improvements on all primary 

endpoints. Data sources included Copernicus CEMS Rapid 

Mapping for floods [9, 21], USGS ShakeMap/ShakeCast for 

earthquakes [10, 11, 20], and event summaries from EM-

DAT/CRED [5, 6], analyzed within the Sendai-aligned 

evaluation frame [1, 2] and climate-extreme context [3, 4]. 

Results are reported as mean ± SD with paired sign-flip 

permutation tests (two-sided) and effect sizes, and are 

visualized below; calibration results (ECE) evidence better 

probability reliability for the Artificial Intelligence (AI)-

Decision Support System (DSS). Human-Artificial 

Intelligence (AI) teaming gains align with prior evidence on 

social-media/EO integration [12], explainability in Disaster 
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Risk Management (DRM) [13], and trustworthy Artificial 

Intelligence (AI) principles [14]; task-level improvements are 

consistent with modern xBD/flood-mapping pipelines and 

SAR-based flood detection literature [15-18], while earthquake 

use-cases leverage USGS/ShakeCast operational products 
[10, 11, 20]. 

 
Table 1: Evaluation dataset summary 

 

Scenario Type Events (n) Primary Sources 

Floods 12 Copernicus CEMS Rapid Mapping [9, 21] 

Earthquakes 8 USGS ShakeMap / ShakeCast [10, 11, 20] 

Total 20 EM-DAT, CRED summaries [5, 6] 

Sources: CEMS [9, 21], USGS [10, 11, 20], EM-DAT/CRED [5, 6]. 

 
Table 2: Task-level model performance (mean ± SD) 

 

Task / Metric Baseline AI-DSS Δ (AI − Base) 

Flood Segmentation (F1) 0.722±0.058 0.815±0.037 0.094 

Building-Damage Classification (AUC) 0.833±0.034 0.887±0.024 0.054 

Methods and datasets: xBD/flood mapping/SAR literature [15-18]. 

 
Table 3: Decision outcomes (mean ± SD) 

 

Outcome Baseline AI-DSS Δ (AI − Base) 

Decision Accuracy (%) 72.7±4.3 83.5±3.7 10.8 pp 

Time-to-Decision (min) 38.5±7.3 27.2±5.9 -11.2 min 

Trust (Likert 1-7) 4.20±0.84 5.44±0.56 1.24 

Human-Artificial Intelligence (AI) interaction measures follow prior Disaster Risk Management (DRM) XArtificial 

Intelligence (AI)/trust guidelines [13, 14, 19]. 

 
Table 4: Probability calibration (ECE) 

 

Task ECE Baseline ECE AI-DSS Δ (AI − Base) 

Flood Segmentation 0.094 0.061 -0.033 

Building-Damage Classification 0.072 0.045 -0.027 

Calibration supports trustworthy deployment [14]. 

 

 
 

Fig 1: Performance uplift on core tasks (Flood F1; Damage AUC). 
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Fig 2: Time-to-decision distribution (min). 

 

 
 

Fig 3: Decision accuracy (%) and operator trust (1-7). 

 

Key Numerical Findings (with interpretation) 

Task-level quality. Flood segmentation improved from 

0.722±0.058 to 0.815±0.037 F1 (Δ = +0.093; p = 0.00110; d 

≈ 1.86), consistent with SAR/EO-aided flood mapping and 

modern deep architectures [15-18], and with access to rapid 

mapping activations [9, 21]. Building-damage AUC increased 

from 0.833±0.034 to 0.887±0.024 (Δ = +0.054; p = 0.02240; 

d ≈ 1.53), in line with xBD-style training and multi-

temporal fusion for post-event assessment [15-17]. These gains 

were observed against the backdrop of more frequent/severe 

extremes identified by IPCC and global reporting [3-6]. 

Decision-level outcomes. Overall decision accuracy rose 

from 72.7±4.3 % to 83.5±3.7 % (Δ = +10.8 pp; p = 0.00010; 

d ≈ 2.88), while time-to-decision dropped from 38.5±7.3 to 

27.2±5.9 min (Δ = −11.3 min; p = 0.00005; d ≈ 1.72). The 

latency reduction is operationally meaningful under 

FEMA/NRF-style response timelines and WHO Health-

EDisaster Risk Management (DRM) guidance for rapid 

situational awareness [7, 8]. Operator trust increased from 

4.20±0.84 to 5.44±0.56 on a 7-point Likert scale (Δ = +1.24; 

p=0.00045; d ≈ 1.79), aligning with literature on 

explainability and user acceptance in high-stakes Disaster 

Risk Management (DRM) [13, 14, 19]. These gains suggest that 

transparent recommendations and uncertainty displays can 

overcome hesitance around “black-box” outputs noted in 

prior studies [13, 14]. 

Calibration and reliability. Expected Calibration Error 

(ECE) decreased for flood segmentation (0.094 → 0.061) 
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and damage classification (0.072 → 0.045), supporting 

more reliable probability estimates crucial for thresholding 

alerts and allocating resources [14]. Better calibration 

mitigates over- or under-reaction risks when integrating 

with operational products such as ShakeMap/ShakeCast and 

Copernicus rapid analyses [9-11, 20-21]. 

Robustness across scenarios. Improvements held across 

heterogeneous events (floods/earthquakes) and data 

modalities (optical/SAR/social-media), consistent with the 

multi-hazard architecture and Sendai-aligned information 

management [1, 2, 9-12, 15-18, 20-21]. While effect sizes were large 

across endpoints, cross-hazard generalization still warrants 

caution given known geographic domain shifts and label 

scarcity documented in the literature [13-18]. 

 

Notes on Statistical Approach 

Paired sign-flip permutation tests (20, 000 permutations) 

were employed for all paired outcomes to avoid 

distributional assumptions under small-N, time-pressured 

scenarios typical in disaster operations; effect sizes are 

Cohen’s d for paired differences. This approach 

complements the evaluation standards seen in 

operational/observational Disaster Risk Management 

(DRM) studies and aligns with trustworthy/transparent 

Artificial Intelligence (AI) reporting [10-14, 19-21]. 

 

Discussion 

The integration of Artificial Intelligence (Artificial 

Intelligence (AI)) into Decision Support Systems (Decision 

Support System (DSS)) for disaster management has 

demonstrated tangible advantages across predictive 

accuracy, situational awareness, and decision confidence. 

The findings of this research confirm that the proposed 

Artificial Intelligence (AI)-enhanced Decision Support 

System (DSS) significantly improves the accuracy and 

responsiveness of disaster-response operations compared 

with traditional frameworks. The increase in task-level 

performance flood segmentation F1 (+0.093) and building-

damage AUC (+0.054) aligns with previous advancements 

in Earth Observation (EO) and remote-sensing-based 

modeling such as the Copernicus CEMS Rapid Mapping 

and xBD datasets [9, 15, 17, 18, 21]. The improved detection of 

inundation and structural damage highlights the benefit of 

integrating multi-temporal satellite imagery with deep 

learning architectures that can generalize across 

heterogeneous hazard landscapes. Similar patterns of 

accuracy gain have been documented in hydrological and 

seismic disaster analyses [10, 11, 16, 20], validating the 

robustness of Artificial Intelligence (AI)-driven 

classification models under dynamic event conditions. 

From a decision-making perspective, the 10.8-percentage-

point improvement in operational accuracy and 11.3-minute 

reduction in time-to-decision demonstrate that Artificial 

Intelligence (AI) systems can provide near-real-time 

recommendations that align with emergency protocols such 

as FEMA’s National Response Framework and WHO’s 

Health-EDisaster Risk Management (DRM) coordination 

models [7, 8]. These results also indicate that human-Artificial 

Intelligence (AI) collaboration enhances situational 

adaptability—where human oversight guides critical 

contextual interpretation, while Artificial Intelligence (AI) 

automates repetitive analytical tasks. This finding resonates 

with global disaster management frameworks, including the 

UNDRR Sendai Framework, which emphasizes the 

integration of technology and human expertise in 

minimizing disaster impacts [1, 2]. The reduction in Expected 

Calibration Error (ECE) across both flood and damage-

detection tasks further reinforces the system’s reliability and 

ability to communicate risk with quantified uncertainty, a 

vital feature for early warning dissemination and multi-

agency coordination [13, 14]. 

Another key insight concerns user trust and system 

interpretability. A 1.24-point increase in perceived trust 

(Likert scale) suggests that the inclusion of explainable 

Artificial Intelligence (AI) (XArtificial Intelligence (AI)) 

modules transparent reasoning pathways and confidence 

intervals fosters confidence among decision-makers [13, 14, 

19]. This aligns with existing research advocating for the use 

of interpretable Artificial Intelligence (AI) to enhance 

adoption in critical infrastructure systems [12-14]. The 

explainability component ensures compliance with ethical 

Artificial Intelligence (AI) standards by reducing the opacity 

of model predictions and supporting accountability during 

crisis response. Moreover, the observed performance 

consistency across floods and earthquakes indicates that the 

Decision Support System (DSS) can generalize effectively 

across hazard types—a core objective under multi-hazard 

resilience principles promoted by IPCC and CRED [3-6]. 

Collectively, these findings reinforce the hypothesis that an 

interpretable, human-in-the-loop Artificial Intelligence (AI)-

Decision Support System (DSS) framework enhances 

operational effectiveness, reduces latency, and builds 

institutional trust within disaster response networks. The 

statistical improvements across all key performance 

indicators substantiate the transformative potential of 

Artificial Intelligence (AI) integration in disaster 

management. Nevertheless, the discussion also underscores 

critical limitations. Despite the high predictive capability, 

domain shifts in remote-sensing imagery, inconsistencies in 

ground-truth data, and unequal data coverage across regions 

may constrain scalability [15-18]. Additionally, ethical 

considerations surrounding data privacy and automated 

decision-making necessitate strict governance under 

national and international standards [7, 8, 13, 14]. Future 

extensions of this work should therefore prioritize federated 

learning frameworks and cross-institutional data sharing to 

maintain model fairness and operational transparency. 

In essence, this research establishes that Artificial 

Intelligence (AI)-enhanced Decision Support System (DSS), 

when embedded with explainability and human oversight, 

can revolutionize how disaster-response agencies anticipate, 

evaluate, and mitigate crisis events. The integration of 

multi-source data (EO, IoT, and social signals) [9-12, 15-18, 20-21] 

within a unified and interpretable architecture reflects a 

strategic advancement toward the Sendai Framework’s 

vision of data-informed, resilient societies [1, 2]. 

 

Conclusion 
The outcomes of this study demonstrate that integrating 
Artificial Intelligence (Artificial Intelligence (AI)) within 
Decision Support Systems (Decision Support System 
(DSS)) can significantly transform disaster management and 
response mechanisms by enhancing accuracy, reducing 
decision latency, and improving human trust in technology-
assisted operations. The Artificial Intelligence (AI)-
enhanced Decision Support System (DSS) designed and 
tested in this research consistently outperformed traditional 
systems in both predictive and decision-support tasks, 
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validating the hypothesis that a human-in-the-loop, 
interpretable Artificial Intelligence (AI) framework can 
provide a tangible operational advantage in crisis scenarios. 
By combining multi-modal data sources—such as satellite 
imagery, IoT sensor networks, and real-time social media 
inputs—the system achieved superior situational awareness 
and more reliable event classification outcomes. 
Importantly, the improvements in model calibration and 
explainability enabled decision-makers to not only act faster 
but also with greater confidence in the validity of Artificial 
Intelligence (AI)-generated recommendations. These 
findings underscore the necessity of embedding Artificial 
Intelligence (AI) tools into disaster-response workflows, not 
as replacements for human expertise, but as force 
multipliers that enhance the precision and agility of human 
decision-making. 
From a practical standpoint, the research highlights several 
actionable pathways to strengthen the implementation of 
Artificial Intelligence (AI)-enhanced Decision Support 
System (DSS) in real-world disaster management. First, 
disaster-response agencies should institutionalize 
continuous data-sharing frameworks that allow real-time 
integration of geospatial, meteorological, and social data 
streams. This would ensure that Artificial Intelligence (AI) 
systems operate with the most current and contextually 
relevant information during emergencies. Second, Artificial 
Intelligence (AI)-driven decision-support platforms must 
incorporate explainable interfaces that communicate the 
rationale, uncertainty, and limitations of model predictions 
in an easily interpretable manner for field responders, 
policymakers, and technical analysts alike. Third, national 
and local disaster-management authorities should prioritize 
training programs focused on Artificial Intelligence (AI) 
literacy, enabling emergency personnel to effectively 
interpret and supervise Artificial Intelligence (AI)-generated 
outputs during critical operations. Fourth, investments in 
cloud-based and edge-computing infrastructures are 
essential to maintain low-latency, high-reliability Artificial 
Intelligence (AI) inference pipelines, particularly in 
resource-constrained environments. Fifth, cross-sector 
collaboration among government agencies, academia, and 
private Artificial Intelligence (AI) firms should be 
encouraged to co-develop interoperable standards, ethical 
guidelines, and robust data-governance protocols that 
safeguard privacy while promoting transparency. Lastly, 
simulation-based exercises integrating Artificial Intelligence 
(AI)-Decision Support System (DSS) into mock emergency 
operations can help agencies identify potential technical or 
procedural bottlenecks before real crises occur. Overall, this 
study provides compelling evidence that the systematic 
adoption of transparent, adaptive, and ethically governed 
Artificial Intelligence (AI)-enhanced decision-support 
frameworks can mark a paradigm shift toward faster, 
smarter, and more resilient disaster-management systems 
worldwide. 
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