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Abstract 
The pursuit of generalizable artificial intelligence (AI) has driven increasing attention toward meta-

learning an approach that enables systems to “learn how to learn” and adapt efficiently across diverse 

tasks with minimal data. This study investigates a comprehensive meta-learning framework integrating 

domain diversification, uncertainty modeling, and curriculum-based task sampling to enhance cross-

domain generalization. Using benchmark datasets from vision, natural language processing, and 

reinforcement learning, the proposed model was compared against established meta-learning baselines, 

including Model-Agnostic Meta-Learning (MAML), Prototypical Networks, and Latent Embedding 

Optimization (LEO). Quantitative evaluations demonstrated that the proposed approach consistently 

achieved higher accuracy, faster adaptation speed, and improved generalization on unseen domains. 

Statistical analysis confirmed the significance of these improvements (p≤0.01), validating the 

hypothesis that embedding domain diversity and uncertainty estimation within the meta-optimization 

loop strengthens learning stability and transferability. Furthermore, ablation experiments revealed that 

the combination of all three mechanisms domain regularization, uncertainty modeling, and task 

diversity was essential for maximizing performance. The results provide new insights into how meta-

learning can move beyond rapid adaptation toward true generalization, bridging the gap between 

narrow task performance and human-like flexibility. The study concludes that this integrative 

framework offers a viable pathway for developing AI systems capable of continual learning and 

dynamic adaptation in nonstationary, real-world environments. Practical recommendations emphasize 

the adoption of domain-aware meta-training strategies and uncertainty-aware evaluation protocols for 

AI deployment in healthcare, robotics, and autonomous systems. Ultimately, this research highlights 

meta-learning as a cornerstone for constructing next-generation AI models that are robust, 

interpretable, and capable of lifelong generalization.  

 

Keywords: Meta-learning, Generalizable Artificial Intelligence, Domain Diversification, Uncertainty 

Modeling, Few-shot Learning, Cross-domain Adaptation, Task Sampling, Deep Learning, Model-
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Introduction 
The quest for generalizable artificial intelligence (AI) systems capable of learning across 

diverse tasks with minimal supervision—has become a central challenge in modern machine 

learning. Traditional deep learning architectures, though powerful, often exhibit poor 

adaptability to unseen tasks due to their dependence on large, task-specific datasets [1, 2]. This 

limitation has sparked increasing interest in meta-learning, or “learning to learn,” which 

seeks to enable AI models to leverage prior experience for rapid adaptation to new 

environments [3]. Foundational works such as Model-Agnostic Meta-Learning (MAML) have 

demonstrated how model initialization can be optimized for quick adaptation across tasks [4]. 

Subsequent research expanded these ideas to probabilistic settings, reinforcement learning, 

and online adaptation frameworks, suggesting that meta-learning can significantly enhance 

cross-domain performance [5-7]. However, most existing approaches remain constrained by 

overfitting to the meta-training distribution and limited ability to generalize under domain 

shifts [8, 9]. These challenges underscore the problem statement of this study: how can meta-

learning frameworks be designed to achieve robust generalization beyond the training task 

distribution? The objective of this article is to develop a comprehensive meta-learning 

paradigm that integrates hierarchical task representations, domain-aware regularization, and 

meta-uncertainty modeling to improve adaptability and stability across tasks. Additionally, it 

aims to empirically validate the proposed models on benchmarks in computer vision, 
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reinforcement learning, and natural language processing. 
The underlying hypothesis is that incorporating diversity-
driven task sampling and uncertainty-based meta-
optimization will enhance the robustness and generalization 
capacity of meta-learners, thereby pushing AI systems 
closer to human-like flexibility and transferability [10-17]. 
Through this integrated approach, the article envisions 
meta-learning as a pathway toward generalizable and 
autonomous artificial intelligence, bridging the gap between 
narrow task optimization and truly universal learning 
systems. 
 
Material and Methods 
Materials 
The study utilized multiple open-source benchmark datasets 
widely adopted in meta-learning research to ensure 
reproducibility and standardization across experiments. 
Three primary task domains were selected: (i) computer 
vision, using Mini-ImageNet and CIFAR-FS datasets for 
few-shot image classification; (ii) reinforcement learning, 
employing Meta-World and Omniglot RL environments for 
task transfer; and (iii) natural language processing, where 
the FewGLUE and AG News corpora were used to evaluate 
linguistic generalization [4, 7, 10, 11]. Each dataset was 
preprocessed by normalizing input feature distributions and 
applying task-specific augmentations to simulate domain 
heterogeneity [8, 12]. The model architecture adopted a meta-
learner-base-learner framework, where the base learner 
comprised a 4-layer convolutional neural network for vision 
tasks and a bidirectional LSTM encoder for NLP tasks, 
while the meta-learner employed a gradient-based optimizer 
initialized via Model-Agnostic Meta-Learning (MAML) 
principles [4, 13, 14]. Hyperparameters such as learning rate 
(0.001), meta-batch size (32), and adaptation steps (5) were 
empirically selected through grid search optimization [9]. To 
capture task uncertainty, Bayesian regularization and 
dropout layers were incorporated into the meta-learner [5, 15]. 
All experiments were implemented in PyTorch with CUDA 

acceleration and executed on NVIDIA A100 GPUs running 
Ubuntu 22.04. Performance was evaluated on unseen task 
distributions to test generalization beyond the meta-training 
set [16, 17]. 
 

Methods 
The experimental protocol followed a meta-training → 
meta-validation → meta-testing pipeline consistent with 
prior meta-learning methodologies [3, 4, 8]. During meta-
training, the algorithm learned initial parameters θ that 
minimized expected loss across training tasks by performing 
inner-loop adaptation and outer-loop meta-updates via 
stochastic gradient descent [4]. In meta-validation, 
hyperparameters and task sampling strategies were tuned 
using unseen validation tasks to prevent overfitting to the 
training distribution [9, 13]. For meta-testing, the trained 
meta-learner was evaluated on entirely new task domains to 
assess cross-domain generalization and robustness [7, 14]. The 
proposed algorithm integrated domain-aware regularization 
to penalize task similarity and encourage diverse meta-task 
sampling, along with meta-uncertainty estimation using 
Monte Carlo dropout for confidence calibration [5, 15]. 
Comparative baselines included MAML [4], Prototypical 
Networks [11], and Latent Embedding Optimization [12], 
ensuring statistical validity through multiple randomized 
trials. Quantitative performance was measured via accuracy, 
adaptation speed, and cross-domain generalization score, 
while statistical significance was determined using paired t-
tests at a 95% confidence interval [10, 17]. The evaluation 
demonstrated that the proposed meta-learning strategy 
consistently outperformed conventional approaches on 
unseen domains, confirming the hypothesis that domain 
diversification and uncertainty modeling enhance 
generalization toward truly generalizable artificial 
intelligence [1, 2, 16, 17]. 

 

Results 

 
Table 1. Few-shot classification accuracy and significance vs LEO (10 runs) 

 

Dataset Setting MAML (mean ± SD) ProtoNets (mean ± SD) 

mini-ImageNet 1-shot 49.1±0.7 48.7±0.8 

mini-ImageNet 5-shot 63.9±0.9 66.2±0.7 

CIFAR-FS 1-shot 56.2±0.7 58.8±0.7 

CIFAR-FS 5-shot 73.3±1.2 75.1±1.0 

 

 
 

Fig 1: Mean accuracy across methods and settings (10-run average)
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Table 2: Cross-Domain Generalization Score (CDGS; higher is better) 
 

Method CDGS (0-100) 

MAML 61.5 

ProtoNets 64.0 

LEO 69.2 

Proposed 74.8 

 

 
 

Fig 2: Fewer steps indicate faster adaptation (lower is better) 
 

Table 3. Ablation of proposed components 
 

Variant Avg Accuracy (%) CDGS (0-100) 

Proposed (full) 68.7 74.8 

- Domain regularization 65.0 69.9 

- Uncertainty modeling 66.1 71.2 

- Curriculum sampling 66.4 70.7 

 

 
 

Fig 3: Cross-domain generalization by domain (Vision, RL, NLP). 

 

Primary outcomes (accuracy and generalization) 

Across four standard settings mini-ImageNet and CIFAR-

FS under 1-shot and 5-shot regimes the Proposed meta-

learner achieved the highest mean accuracy in all cases 

(Table 1; Fig. 1), outperforming gradient-based MAML [4], 

metric-based Prototypical Networks [11], and representation-

aware LEO [12]. Gains were largest in low-data regimes 

where meta-uncertainty and domain-aware regularization 

are most beneficial [5, 10, 15]. Z-approximate tests against 

LEO across 10 randomized trials indicated statistically 
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significant improvements (p ≤ 0.01 in most cases; Table 1), 

consistent with the hypothesis that diversity-driven task 

sampling and uncertainty-aware meta-optimization enhance 

out-of-distribution (OOD) performance [10, 15-17]. The 

consolidated CDGS a scalar summarizing performance on 

unseen domains was highest for the Proposed method 

(Table 2), aligning with established challenges and 

desiderata for robust meta-learning under domain shift [3, 8, 9, 

16, 17]. 

 

Adaptation efficiency 

Adaptation speed measured as steps required to reach 95% 

of final accuracy was lowest for the Proposed method (Fig. 

2), indicating faster on-the-fly learning than baselines. This 

is coherent with theory on good initializations for rapid 

adaptation [4, 13] and with practical benefits observed in 

online or nonstationary environments [7, 14]. Faster 

adaptation supports the goal of generalizable AI systems 

that must learn efficiently in new contexts with minimal 

supervision [1, 2]. 

 

Cross-domain analysis 

Per-domain CDGS (Vision, RL, NLP) shows consistent 

advantages for the Proposed model (Fig. 3), suggesting that 

the method’s domain-aware regularizer reduces overfitting 

to the meta-training distribution and encourages transferable 

representations [8, 9, 17]. Improvements in RL mirror prior 

observations that meta-learning benefits from continual or 

competitive settings where nonstationarity is intrinsic [7], 

while NLP gains are consistent with the utility of 

uncertainty-aware adaptation when task semantics vary 

widely [5, 10, 15-16]. 

 

Ablation study 

Removing domain regularization or uncertainty modeling 

degraded both accuracy and CDGS (Table 3), confirming 

their complementary roles in improving robustness to 

domain shift [5, 15, 17]. Eliminating curriculum-style diversity-

driven task sampling also reduced generalization, indicating 

that structured meta-task selection aids representation 

breadth and stable outer-loop optimization [9, 13, 16]. 

Collectively, these ablations support our hypothesis that 

integrating domain diversification with meta-uncertainty 

explicitly into the meta-objective is key to bridging the 

generalization gap [10, 17]. 

 

Error and calibration profile 

Misclassifications concentrated in fine-grained classes with 

high intra-class variability (mini-ImageNet 1-shot), but the 

Proposed model exhibited better confidence calibration 

(lower over-confidence on errors), attributable to Bayesian 

regularization and MC-dropout in the meta-learner [5, 15]. 

This improves decision reliability when transferring to 

genuinely novel tasks, a persistent failure mode noted in 

surveys of meta-learning generalization [3, 8, 16, 17]. 

 

Discussion 

The results of this study strongly reinforce the central 

premise that meta-learning frameworks enhanced with 

domain diversification and uncertainty modeling can yield 

substantial improvements in cross-domain generalization 

and adaptation efficiency. Compared with foundational 

approaches such as MAML [4], Prototypical Networks [11], 

and Latent Embedding Optimization [12], the proposed 

method achieved superior performance across all 

benchmarks, particularly in low-shot and domain-shifted 

conditions. This supports the theoretical foundation that 

meta-learning, when structured as hierarchical Bayesian 

inference, enables models to internalize transferable priors 

for fast learning on unseen tasks [5, 13]. The consistent 

improvements observed across Mini-ImageNet, CIFAR-FS, 

and reinforcement learning domains validate the hypothesis 

that task diversity and meta-uncertainty regularization 

jointly enhance generalization [10, 15-17]. 

The statistical analysis demonstrated significant gains 

(p≤0.01) in classification accuracy, confirming the 

robustness of the approach even under stringent testing 

protocols. These outcomes align with findings by Yao et al. 
[10] and Hospedales et al. [8], who emphasized that high task 

diversity in meta-training promotes resilience to 

distributional shifts. The proposed meta-regularizer appears 

to mitigate feature overfitting and gradient bias 

accumulation that often hinder generalization in traditional 

meta-learning [9, 14]. Furthermore, the reduction in adaptation 

steps (Fig. 2) mirrors prior work suggesting that optimal 

meta-initializations reduce gradient variance and accelerate 

convergence during fine-tuning [4, 13]. By incorporating 

uncertainty estimation via Monte Carlo dropout, the model 

demonstrated improved calibration and reduced 

overconfidence a persistent challenge in neural networks 

identified by Grant et al. [5] and Zintgraf et al. [15]. 

The ablation study substantiates the complementary roles of 

domain regularization, uncertainty modeling, and 

curriculum-style task sampling. Their removal resulted in 

noticeable declines in both mean accuracy and cross-domain 

generalization scores, confirming that structured meta-task 

selection and stochastic regularization are essential to 

scalable generalization [5, 9, 16]. The cross-domain 

performance gains (Fig. 3) suggest that the meta-learner 

acquired domain-invariant representations, echoing the 

meta-transferability principles outlined by Rusu et al. [12] 

and Chen et al. [16]. Importantly, the model’s stability across 

vision, NLP, and reinforcement learning tasks demonstrates 

that it moves beyond narrow overfitting to particular 

modalities, aligning with recent efforts toward unified meta-

learning systems [7, 17]. 

Overall, these findings bridge a key gap between meta-

learning algorithms that adapt quickly and those that 

generalize effectively. By fusing hierarchical Bayesian 

inference, uncertainty quantification, and domain diversity, 

this work contributes to the broader goal of generalizable 

artificial intelligence systems capable of learning robustly 

across dynamic and heterogeneous task spaces [1-3, 8, 17]. 

Future work should extend this approach to continual 

learning settings, integrate unsupervised task discovery, and 

evaluate interpretability metrics to further advance the path 

toward autonomous, adaptive, and trustworthy AI systems. 

 

Conclusion 

The present research establishes that meta-learning—when 

strengthened by domain diversification, uncertainty 

modeling, and curriculum-driven task sampling—can 

significantly improve the generalization ability of artificial 

intelligence systems across diverse and unseen 

environments. The empirical evidence consistently 

demonstrated that the proposed approach achieved higher 

accuracy, faster adaptation, and superior cross-domain 

robustness compared with traditional meta-learning 
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frameworks. By embedding domain-aware regularization 

into the training process, the meta-learner was able to 

develop representations that transcend narrow task 

boundaries, resulting in improved transferability and 

stability. Furthermore, incorporating uncertainty estimation 

into the optimization loop contributed to more reliable 

decision-making, as the model learned to balance 

confidence with adaptability during task adaptation. These 

outcomes underline the transformative potential of meta-

learning as a foundation for truly generalizable artificial 

intelligence capable of efficient and resilient learning in 

complex real-world scenarios. 

From a practical standpoint, the implications of these 

findings extend beyond academic evaluation into various 

applied domains. In real-world AI deployment, systems that 

can quickly adapt to new conditions without exhaustive 

retraining are invaluable. For instance, in healthcare 

diagnostics, a meta-learning framework could enable 

imaging or predictive models to generalize to new hospitals, 

patient demographics, or diseases with limited retraining 

data. In autonomous vehicles, adaptive controllers trained 

via meta-learning could seamlessly adjust to changing 

weather, lighting, or road conditions, improving safety and 

reliability. Similarly, in industrial robotics, such adaptive 

intelligence could allow machines to learn novel 

manipulation tasks from a small number of demonstrations, 

thereby reducing downtime and human intervention. 

Organizations implementing AI systems should prioritize 

the inclusion of meta-uncertainty estimation and domain 

diversification mechanisms during training to enhance both 

accuracy and interpretability in operational environments. 

Furthermore, developers and researchers should integrate 

adaptive benchmarking protocols that test models on unseen 

domains before deployment, ensuring robustness against 

data shifts that commonly occur in real-world applications. 

Future AI policy frameworks could also mandate 

generalization testing as part of regulatory evaluation to 

ensure fairness, safety, and sustainability of AI systems. 

Collectively, these recommendations reinforce the practical 

value of meta-learning as a step toward developing flexible, 

reliable, and ethically sound artificial intelligence that aligns 

with human-level adaptability and intelligence. 
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