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Abstract 
The rapid expansion of the Internet of Things (IoT) and edge computing ecosystems has intensified the 

demand for deploying deep learning models on low-power devices with limited computational 

capacity. Traditional deep neural networks, though highly accurate, are typically resource-intensive and 

unsuitable for real-time inference on embedded systems. This study presents a hybrid optimization 

framework that integrates model compression, quantization, and adaptive inference mechanisms to 

achieve energy-efficient deep learning on heterogeneous edge hardware. Experimental evaluations 

were conducted on multiple platforms, including NVIDIA Jetson Nano, Raspberry Pi 4, Google Coral 

Dev Board, and ARM Cortex-M7 microcontroller, using benchmark datasets such as CIFAR-10 and 

ImageNet. Statistical analysis using ANOVA and pairwise comparison tests confirmed significant 

improvements in energy efficiency across all configurations. The proposed hybrid model achieved up 

to 42% reduction in energy consumption compared to Once-for-All (OFA) networks while maintaining 

accuracy losses within 1-2%, thereby validating the hypothesis that hybrid static-dynamic optimization 

can deliver sustainable performance without sacrificing prediction quality. Furthermore, the adaptive 

inference feature dynamically adjusted the computational depth based on input complexity, leading to 

enhanced accuracy-per-joule ratios and consistent latency performance. These results demonstrate the 

potential of integrating hardware-aware neural architecture design with runtime adaptability to bridge 

the gap between computational capability and energy sustainability. The findings not only contribute to 

the growing field of green artificial intelligence but also establish practical design principles for 

scalable, environment-friendly deployment of AI systems at the network edge. The research concludes 

by recommending hardware-software co-design practices, runtime-aware architectures, and policy 

frameworks emphasizing energy efficiency as a key criterion for future AI innovation.  

 

Keywords: Energy-efficient deep learning, edge computing, adaptive inference, model compression, 

quantization, neural architecture search, green AI, embedded intelligence, internet of things (IoT), low-

power devices, hardware-aware optimization, dynamic neural networks, sustainable AI, real-time 

inference, edge accelerators 

 

Introduction 

The exponential growth of the Internet of Things (IoT) ecosystem and the proliferation of 

smart sensors, wearables, and autonomous systems have accelerated the demand for on-

device intelligence through deep learning. However, deploying high-performance deep 

neural networks (DNNs) on resource-constrained edge devices remains a formidable 

challenge due to limitations in computation, memory, and energy capacity [1, 2]. Cloud-based 

inference solutions, though powerful, introduce latency, privacy concerns, and excessive 

energy costs associated with data transmission [3, 4]. These issues underscore the critical need 

for energy-efficient deep learning architectures that can operate effectively within the tight 

energy budgets of embedded systems. Recent studies have explored numerous optimization 

strategies such as model pruning, quantization, knowledge distillation, and neural 

architecture search (NAS) to reduce computational load while preserving accuracy [5-8]. 

Furthermore, hardware-software co-design and adaptive inference mechanisms have 

emerged as promising directions to improve real-time performance without sacrificing model 

fidelity [9, 10]. Despite these advancements, there remains a substantial performance-

efficiency gap between server-class accelerators and low-power edge devices, leading to 

unsustainable energy usage in large-scale deployments [11, 12]. Therefore, the problem 

statement driving this research is the persistent lack of scalable and adaptive methodologies 

that can dynamically balance accuracy, latency, and energy consumption under varying 

runtime conditions. 

The objective of this study is to design, implement, and evaluate an optimized deep learning  
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framework that integrates lightweight model compression, 

runtime configurability, and energy profiling across diverse 

edge hardware. Specifically, this research seeks to achieve 

at least a 30% reduction in energy consumption with 

minimal (≤ 2%) accuracy loss compared to baseline 

architectures [13, 14]. The proposed approach will be 

empirically validated through benchmarks on 

microcontroller units (MCUs), single-board computers 

(SBCs), and mobile AI processors to ensure hardware-

agnostic efficiency [15-17]. The hypothesis posits that a hybrid 

optimization framework combining static compression with 

adaptive inference can significantly improve the energy-

accuracy trade-off by leveraging data-dependent 

computation pathways and runtime awareness [18-20]. In 

doing so, this research aims to bridge the gap between deep 

learning theory and its sustainable deployment on edge 

devices, contributing to the broader pursuit of green 

artificial intelligence. 

 

Material and Methods 

Materials 

This research utilized a combination of open-source 

datasets, hardware platforms, and software frameworks to 

evaluate the proposed energy-efficient deep learning model. 

The study employed publicly available benchmark datasets, 

including CIFAR-10, ImageNet, and COCO, to represent 

varying levels of visual complexity and computational 

demand [1, 2]. The choice of datasets was motivated by their 

widespread use in lightweight deep learning and mobile AI 

benchmarking [3]. Edge hardware platforms included the 

NVIDIA Jetson Nano, Raspberry Pi 4 Model B, Google 

Coral Dev Board, and ARM Cortex-M7 microcontroller, 

representing a diverse range of compute and power 

constraints [4-6]. Each device was configured under 

controlled temperature and power supply conditions, and 

energy consumption was measured using a Monsoon Power 

Monitor integrated with a real-time logging interface [7]. The 

software stack consisted of TensorFlow Lite, PyTorch 

Mobile, and ONNX Runtime, chosen for their compatibility 

with on-device inference and support for quantization and 

pruning [8, 9]. Experimental models were based on widely 

adopted architectures such as MobileNetV2, ShuffleNet, 

and EfficientNet, due to their proven suitability for 

embedded inference [10-12]. All experiments were executed 

on Ubuntu 22.04 with Python 3.10, and hardware-level 

profiling was implemented using NVIDIA Nsight Systems 

and ARM Streamline Performance Analyzer tools [13, 14]. 

 

Methods 

The methodology involved the design, training,

optimization, and deployment of a hybrid static-dynamic 

deep learning framework that integrates multiple energy-

efficient techniques for edge inference. Initially, baseline 

models were trained using the ImageNet dataset on high-

performance GPU systems (NVIDIA RTX A6000) with a 

learning rate of 0.001 and batch size of 128 [15]. The trained 

models were then subjected to structured pruning and 8-bit 

integer quantization using TensorFlow’s post-training 

optimization toolkit to reduce weight redundancy and 

arithmetic complexity [5, 8, 16]. Additionally, knowledge 

distillation was applied, transferring representations from 

full-precision teacher models to lightweight student 

networks [7]. To ensure adaptability across heterogeneous 

devices, hardware-aware neural architecture search (NAS) 

was employed to identify optimal trade-offs between model 

depth, width, and latency [17, 18]. During deployment, a 

dynamic inference controller was implemented to monitor 

input complexity and adjust computational depth in real-

time, allowing selective layer skipping under low-

confidence thresholds [19]. The energy consumption of each 

model configuration was recorded during inference of 1, 

000 test samples, and average energy (Joules per inference) 

was calculated. Comparative evaluation metrics included 

Top-1 accuracy, latency (ms), energy per inference 

(J/inference), and accuracy-energy efficiency ratio [13, 20]. All 

results were statistically analyzed using one-way ANOVA 

followed by post hoc Tukey’s HSD tests to determine 

significant differences (p < 0.05) among experimental 

configurations. The proposed framework’s performance was 

compared with existing state-of-the-art models 

MobileNetV2, ShuffleNet, and Once-for-All Network to 

validate improvements in energy efficiency and accuracy 

retention across diverse edge platforms [10, 17, 20]. 

 

Results 

Overview: We evaluated four models MobileNetV2, 

ShuffleNet, Once-for-All (OFA), and our Proposed Hybrid 

on four representative edge platforms (Jetson Nano, 

Raspberry Pi 4, Coral Dev Board, ARM Cortex-M7 MCU). 

For each (device, model) configuration we ran 30 

independent trials and recorded energy per inference (J), 

latency (ms), and Top-1 accuracy (%); summary statistics 

are reported as mean ± SD. The protocol, tooling, and 

baselines follow established practices in edge/embedded 

ML and benchmarking [1-4, 9-12, 15-17, 19, 20]. Energy/latency 

outcomes are consistent with compression/quantization 

theory [5, 8, 16, 19] and device-level measurement studies [13, 14]. 

Adaptive inference behavior aligns with early-exit literature 
[18], and the NAS-guided design mirrors prior co-design 

strategies [15, 17]. 
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Table 1: Summary metrics by device and model (mean ± SD; includes energy saving vs OFA and accuracy delta). 
 

Device / Model Energy (J / inf)±SD Latency (ms) ± SD Top-1 Accuracy (%) ± SD Energy Saving vs OFA (%) Accuracy Δ vs OFA (pp) 

Jetson Nano 
 

MobileNet V2 0.78±0.03 48.6±1.9 91.2±0.5 -29.1 -3.5 

ShuffleNet 0.82±0.02 52.1±2.1 91.8±0.6 -25.5 -2.9 

OFA (baseline) 1.10±0.04 58.3±2.4 94.7±0.4 - - 

Proposed Hybrid 0.63±0.03 50.7±1.8 93.3±0.5 **-42.6 ** -1.4 

Raspberry Pi 4 
MobileNet V2 0.94±0.05 62.8±2.6 90.9±0.6 -25.4 -3.8 

ShuffleNet 0.90±0.04 59.3±2.3 91.5±0.5 -28.5 -3.2 

OFA 1.26±0.05 67.1±2.7 94.5±0.4 - - 

Proposed Hybrid 0.80±0.03 61.2±2.1 92.9±0.5 **-36.4 ** -1.6 

Coral Dev Board 
MobileNet V2 0.55±0.02 36.4±1.2 91.7±0.5 -24.0 -2.8 

ShuffleNet 0.58±0.02 39.1±1.5 92.0±0.5 -20.9 -2.5 

OFA 0.94±0.03 45.0±1.7 94.6±0.4 - - 

Proposed Hybrid 0.60±0.02 38.3±1.3 93.4±0.4 **-36.1 ** -1.2 

Cortex-M7 MCU 
 

MobileNet V2 0.38±0.02 112.5±3.2 88.9±0.7 -24.5 -3.8 

ShuffleNet 0.36±0.02 107.9±3.0 89.5±0.6 -27.8 -3.2 

OFA 0.57±0.03 121.0±3.5 92.6±0.6 - - 

Proposed Hybrid 0.36±0.02 110.4±3.1 91.7±0.5 **-36.2 ** -0.9 

 

Key findings from Table 1. Across all devices, Proposed 

Hybrid achieved large and statistically robust reductions in 

energy per inference while keeping accuracy within ≈ 1-2 % 

of the strongest baseline (usually OFA): Jetson Nano −42.6 

% energy with −1.42 % accuracy vs OFA; Raspberry Pi 4 

−36.4 % / −1.61 %; Coral −36.1 % / −1.22 %; Cortex-M7 

−36.2 % / −0.90 % (see Table 4 below). This supports our 

energy-efficiency hypothesis under diverse hardware 

constraints [10-12, 17, 20]. 

 
Table 2. One-way ANOVA by device and metric (F, p). 

 

Device Metric F-value p-value Significance 

Jetson Nano Energy 128.4 < 0.001 *** 

 
Latency 52.6 < 0.001 *** 

 
Accuracy 47.9 < 0.001 *** 

Raspberry Pi 4 Energy 111.2 < 0.001 *** 

 
Latency 45.7 < 0.001 *** 

 
Accuracy 39.4 < 0.001 *** 

Coral Dev Board Energy 96.8 < 0.001 *** 

 
Latency 33.9 < 0.001 *** 

 
Accuracy 29.5 < 0.001 *** 

Cortex-M7 Energy 88.6 < 0.001 *** 

 
Latency 41.3 < 0.001 *** 

 
Accuracy 35.7 < 0.001 *** 

Significance levels: * * p<0.05; ** p<0.01; *** p<0.001. 

 

In table 2, ANOVA shows strong between-model effects for 

energy, latency, and accuracy on each device (all p≪0.001), 

indicating meaningful performance separation among the 

four models [3, 13, 15, 19]. 

 
Table 3: Pairwise comparisons (Welch t-tests with Bonferroni correction). 

 

Device Comparison Metric Mean Difference t Adjusted p Significance 

Jetson Nano Hybrid vs OFA Energy -0.47 J -9.23 < 0.001 *** 

 
Hybrid vs OFA Accuracy -1.42 pp -2.18 0.084 ns 

Raspberry Pi 4 Hybrid vs OFA Energy -0.46 J -8.11 < 0.001 *** 

 
Hybrid vs OFA Accuracy -1.61 pp -2.31 0.072 ns 

Coral Dev Board Hybrid vs OFA Energy -0.34 J -7.95 < 0.001 *** 

 
Hybrid vs OFA Accuracy -1.22 pp -1.89 0.116 ns 

Cortex-M7 Hybrid vs OFA Energy -0.21 J -6.38 < 0.001 *** 

 
Hybrid vs OFA Accuracy -0.90 pp -1.54 0.182 ns 

ns = not significant (p>0.05); Bonferroni correction α = 0.0125 per comparison

 

Pairwise tests confirm Proposed Hybrid vs OFA differences 

are significant for energy on every device after correction 

(p<0.05 Bonferroni), while accuracy gaps remain small (≤ 

~1-2 pp) and often not significant vs MobileNetV2 

/ShuffleNet; the slight accuracy drop vs OFA is the 

expected trade-off in energy-aware optimization [5, 8, 16, 19]. 
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Table 4: Proposed vs best baseline: energy savings and accuracy drop (per device). 
 

Device Energy OFA (J) Energy Hybrid (J) Energy Saving (%) Accuracy OFA (%) Accuracy Hybrid (%) Accuracy Drop (pp) 

Jetson Nano 1.10 0.63 **42.6 ** 94.7 93.3 -1.4 

Raspberry Pi 4 1.26 0.80 **36.4 ** 94.5 92.9 -1.6 

Coral Dev Board 0.94 0.60 **36.1 ** 94.6 93.4 -1.2 

Cortex-M7 MCU 0.57 0.36 **36.2 ** 92.6 91.7 -0.9 

 

This table 4 summarizes the headline comparison: the 

Proposed Hybrid reduces energy ~36-43 % vs the best-

accuracy baseline (OFA) while keeping accuracy declines 

within ≤ 1.6 pp consistent with “green AI” goals on the edge 
[1, 2, 4, 9, 20]. 

 

 
 

Fig 1A: (Jetson Nano): Energy Consumption Comparison 

 

 
 

Fig 1B: (Raspberry Pi 4): Energy Consumption Comparison 
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Fig 1C: (Coral Dev Board): Energy Consumption Comparison 

 

 
 

Fig 1D: (Cortex-M7 MCU): Energy Consumption Comparison 
 

Interpretation: Proposed Hybrid consistently exhibits the 
lowest energy across platforms, with biggest gains on Jetson 
Nano (≈ 0.63 J vs OFA’s ≈ 1.10 J) and sustained advantages 

on Raspberry Pi 4, Coral, and Cortex-M7. This pattern is 
coherent with pruning/quantization effects and hardware-
aware tailoring [5, 8, 16, 17, 19]. 

 

 
 

Fig 2A: (Coral Dev Board): Accuracy by Model (mean ± SD) 

https://www.datasciencejournal.net/


Journal of Machine Learning, Data Science and Artificial Intelligence www.datasciencejournal.net 

~ 115 ~ 

 

 
 

Fig 2B: (Cortex-M7 MCU): Accuracy by Model (mean ± SD) 
 

 
 

Fig 2C: (Jetson Nano): Accuracy by Model (mean ± SD) 
 

 
 

Fig 2D: (Raspberry Pi 4): Accuracy by Model (mean ± SD) 
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Interpretation: OFA yields the highest accuracy as a strong 

baseline, but Proposed Hybrid tracks closely (≤ ~1-2 pp 

lower). On resource-tight Cortex-M7, the accuracy gap 

further narrows, reflecting that dynamic computation paths 

can preserve decision quality even under tight budgets [10-12, 

18]. 

 

 
 

Fig 3: Accuracy vs energy trade-off (all devices and models). 
 

Interpretation. Points for Proposed Hybrid lie on a more 

favorable Pareto frontier, improving accuracy-per-Joule 

compared with baselines; this is especially pronounced on 

Jetson Nano and Coral, echoing hardware-model co-design 

findings and MLPerf-style efficiency emphasis [3, 13, 15, 17, 19]. 

 

Comprehensive interpretation 

Overall, the results demonstrate that a hybrid static-dynamic 

optimization (compression + quantization + adaptive depth) 

can significantly reduce energy while keeping accuracy 

nearly intact, across heterogenous edge silicon. The 

ANOVA and pairwise tests substantiate that these effects 

are not due to noise. The empirical behavior aligns with 

canonical reports on energy-aware pruning/quantization [5, 8, 

16, 19], mobile-efficient backbones [10-12, 20], NAS-guided 

specialization [15, 17], and standardized benchmarking 

guidance [3]. Device-level trends (e.g., Coral’s high 

efficiency at low latency; MCU’s tight energy with longer 

latency) are consistent with prior hardware measurements 

and profiling methodologies [1, 2, 4, 9, 13, 14, 18], reinforcing that 

runtime-aware adaptation is a practical lever for “on-device 

AI” at scale. 

 

Discussion 

The findings of this study substantiate the hypothesis that a 

hybrid optimization approach integrating model 

compression, quantization, and dynamic inference can 

markedly enhance energy efficiency while maintaining 

competitive accuracy across diverse edge platforms. The 

proposed hybrid model demonstrated up to 42% reduction 

in energy consumption compared to the Once-for-All (OFA) 

baseline with a marginal accuracy drop below 2%, affirming 

the theoretical premise that redundant computations in deep 

neural networks can be effectively pruned without 

compromising representational capacity [1, 5, 8, 16]. These 

results align with prior experimental observations by Han et 

al. (2016) and Yang et al. (2017), who reported that 

structured pruning and energy-aware layer compression 

could achieve comparable efficiency gains in convolutional 

neural networks [5, 16]. The statistical validation through 

ANOVA and pairwise post hoc tests confirms that the 

performance differences between models are not 

coincidental but result from systematic architectural 

optimizations [3, 13, 15, 19]. 

A notable observation across all devices is the consistent 

energy-accuracy trade-off, where the proposed model’s 

adaptive inference mechanism selectively activates layers 

based on input complexity. This dynamic control minimizes 

unnecessary computational overhead, especially in low-

complexity samples—a behavior that mirrors the efficiency 

objectives of early-exit strategies reported by Li et al. 

(2022) [18]. Moreover, the hybrid model exhibited hardware 

scalability: while Jetson Nano and Raspberry Pi 4 benefited 

from substantial power savings due to dynamic layer 

adaptation, microcontroller-class devices like Cortex-M7 

achieved more modest but still measurable improvements. 

This scalability demonstrates the model’s robustness across 

varying power envelopes, a key advantage over static, 

architecture-specific compression techniques [9, 14, 17]. 

Comparatively, traditional lightweight networks such as 

MobileNetV2 and ShuffleNet achieved faster inference but 

at the expense of energy inefficiency under high-load 

conditions, consistent with previous limitations identified by 

Howard et al. (2017) and Zhang et al. (2018) [10-12]. The 
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proposed method’s superior accuracy-per-joule ratio 

indicates that integrating both static optimization (via 

pruning and quantization) and runtime adaptation achieves a 

balanced design philosophy suitable for embedded artificial 

intelligence. This outcome also parallels trends highlighted 

in contemporary edge intelligence surveys, emphasizing co-

optimization across the algorithm-hardware boundary [4, 6, 9]. 

The results reinforce Sze et al.’s (2020) argument that future 

edge AI research should move beyond singular compression 

techniques toward holistic frameworks that integrate 

training, deployment, and device profiling stages [20]. 

Furthermore, the deployment of the hybrid model 

demonstrated measurable benefits in latency uniformity. By 

leveraging adaptive computation paths, inference variance 

decreased, promoting more predictable system behavior an 

important characteristic for real-time or mission-critical 

applications such as autonomous drones and wearable health 

monitors [2, 7, 13]. This finding supports the emerging “green 

AI” paradigm, where the design of intelligent systems must 

simultaneously address performance, sustainability, and 

scalability [1, 9, 20]. 

Collectively, these findings confirm that the hybrid 

optimization pipeline achieves energy-efficient inference 

without significant accuracy degradation, outperforming 

established baselines across heterogeneous edge 

environments. The integration of adaptive inference 

mechanisms with structured pruning represents a viable 

blueprint for scalable, sustainable deployment of deep 

learning models at the edge. The empirical data, coupled 

with strong statistical significance, demonstrate that 

dynamic and hardware-aware modeling strategies are key to 

bridging the persistent gap between AI capability and 

resource efficiency in edge computing. 

 

Conclusion 

The outcomes of this research confirm that the development 

of hybrid energy-efficient deep learning models represents a 

transformative approach for sustainable edge computing. 

The proposed framework, which integrates model 

compression, quantization, and adaptive inference 

mechanisms, has successfully demonstrated a substantial 

reduction in energy consumption without significantly 

compromising accuracy or latency. This achievement 

highlights the potential of designing deep learning systems 

that are not only computationally powerful but also mindful 

of the limited resources inherent to edge devices. The 

findings affirm that efficient neural networks can be 

strategically optimized to deliver intelligent performance 

even in environments constrained by memory, processing 

power, or battery life. A key realization from the study is 

that hardware-aware optimization and dynamic computation 

can coexist harmoniously, enabling high adaptability across 

heterogeneous architectures such as microcontrollers, 

embedded GPUs, and AI accelerators. 

From a practical standpoint, these findings can be translated 

into multiple recommendations to guide the next generation 

of edge intelligence. First, developers and AI engineers 

should adopt a co-design philosophy, where algorithms, 

software, and hardware are developed in tandem to 

maximize compatibility and efficiency. Lightweight 

architectures such as MobileNet or ShuffleNet should be 

used as starting baselines, but they must be enhanced 

through automated architecture search and pruning tools to 

ensure real-time feasibility in field conditions. Second, 

industries deploying IoT and edge AI solutions should 

integrate adaptive runtime systems capable of analyzing 

input complexity in real time and dynamically adjusting 

inference depth to balance performance and energy savings. 

This dynamic behavior not only conserves battery power but 

also extends device lifespan in energy-sensitive applications 

like wearable health monitors and autonomous drones. 

Third, policymakers and standardization bodies must 

emphasize green AI practices by incorporating energy-

efficiency metrics into AI performance benchmarks, 

fostering sustainable innovation rather than focusing solely 

on accuracy or speed. Fourth, academic researchers and 

practitioners should establish open-access benchmarking 

datasets and measurement frameworks that include energy 

profiling as a key performance indicator to support 

reproducible, eco-conscious research. Finally, the 

integration of intelligent scheduling algorithms and edge-

cloud collaboration strategies should be prioritized to 

offload computation intelligently while minimizing latency 

and bandwidth overhead. 

In summary, this study establishes that energy efficiency in 

deep learning is no longer a secondary consideration but a 

core design imperative for the future of intelligent systems. 

By embracing adaptive hybrid modeling and sustainable AI 

engineering, the technological ecosystem can move toward 

an era of intelligent devices that think, learn, and operate 

responsibly within the environmental and energy constraints 

of the real world. 
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