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Abstract 
The increasing reliance on data-driven approaches algorithms in medical imaging is constrained by 

limited availability of labeled datasets, patient privacy restrictions, and class imbalance across disease 

categories. This study critically investigates and evaluates the role of Generative Artificial Intelligence 

(AI) specifically diffusion-based models models in creating high-fidelity synthetic medical imaging 

data to augment real-world datasets and improve diagnostic model performance. Multimodal imaging 

datasets, including MRI, CT, and X-ray, were used to train and evaluate various generative frameworks 

such as Variational Autoencoders (VAE), StyleGAN2, Denoising Diffusion Probabilistic Models 

(DDPM), and their privacy-enhanced variant (DP-DDPM). Quantitative metrics including Frechet 

Inception Distance (FID), Multi-Scale Structural Similarity (MS-SSIM), and Inception Score (IS) were 

employed to assess realism, while model performance was validated using classification and 

segmentation benchmarks under both internal and external conditions. The results revealed that DDPM 

consistently achieved superior synthesis quality (FID < 20, MS-SSIM ≈ 0.95) and improved 

downstream task performance by approximately 4% over real-only baselines. Incorporating differential 

privacy noise (DP-DDPM) reduced re-identification risk to below 1% with negligible loss in fidelity. 

Radiologist validation confirmed over 90% clinical plausibility of synthetic images across modalities. 

The integrated Fidelity-Utility-Privacy (FUP) score provided a structured evaluation framework, 

enabling balanced trade-offs between realism, diagnostic utility, and data protection. Overall, the study 

strongly demonstrates that diffusion-based models generative AI can effectively augment medical 

imaging datasets, enhance model robustness, and support privacy-preserving frameworks AI 

development. The findings highlight the importance of establishing standardized evaluation protocols, 

radiologist-guided validation, and governance-aligned scorecards for responsible clinical adoption of 

synthetic data. This research offers a reproducible blueprint for ethical, scalable, and privacy-conscious 

data augmentation in medical imaging, promoting equitable access to high-quality AI training data 

across healthcare institutions.  

 

Keywords: Generative artificial intelligence, diffusion models, synthetic medical data, medical 

imaging, data augmentation, privacy preservation, differential privacy, Fidelity-Utility-Privacy (FUP) 

Score, diagnostic deep learning, cross-site generalization, ethical AI, radiologist validation, Variational 

Autoencoders, generative adversarial networks healthcare data governance 

 

Introduction 
Medical imaging underpins diagnostic decision-making and treatment planning, yet progress 

in data-driven approaches models is constrained by limited labeled data for rare pathologies, 

site-to-site heterogeneity, and stringent privacy requirements that hinder data sharing. 

Generative AI offers a principled path to expand datasets while protecting patient identity: 

early work with GANs and VAEs established feasibility for realistic synthesis and 

augmentation, while newer diffusion models have improved fidelity and controllability 

across CT, MRI, X-ray and ultrasound tasks [1-5]. Recent systematic reviews and surveys 

converge on two open problems: (i) ensuring that synthetic images preserve clinically salient 

signals (e.g., subtle lesions, biomarkers) rather than hallucinations or mode collapse, and (ii) 

standardizing Fidelity-Utility-Privacy (FUP) evaluation so that synthetic data demonstrably 

improves downstream performance without re-identification risk [1-4, 6-9, 12]. Empirical studies 

show that supplementing real data with high-quality synthetic images can improve internal 

and external generalization especially for under-represented classes yet effects vary with 

generation method, conditioning strategy, and training protocol, and can be confounded by 

distribution leakage if evaluation is not properly separated from the synthesis source [5, 6]. 

Parallel literature in privacy and governance emphasizes explicit trade-offs (fidelity vs utility 

vs privacy) and recommends transparent, task-aware scorecards and metrics to guide 
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deployment [7-9, 12, 13]. Accordingly, this study addresses the 
following: Problem statement. There is no consensus 
pipeline that (a) guarantees pathology-faithful synthesis 
across modalities and (b) quantifies real-world gains from 
synthetic augmentation under rigorous privacy constraints. 
Objectives. (1) Design a generative pipeline (focusing on 
diffusion-based models or hybrid models) with pathology-
preservation constraints; (2) implement a standardized 
evaluation protocol spanning fidelity, downstream utility 
(classification/segmentation), and privacy risk; (3) analyze 
conditions under which synthetic data most benefits 
minority classes and cross-site robustness [1-4, 6-9, 12-15]. 
Hypotheses. H1: Models trained on hybrid (real+synthetic) 
datasets outperform real-only baselines on 
accuracy/sensitivity/ robustness, with the largest gains for 
rare classes. H2: Under matched training budgets and strict 
train-tune-test disjointness, carefully controlled synthetic 
augmentation improves external generalization without 
materially increasing re-identification risk, as measured by 
current privacy/utility metrics [5, 7-9, 12-14]. 
 
Material and Methods 
Materials 
This study employed multimodal medical imaging datasets 
and generative AI frameworks to evaluate the feasibility and 
impact of synthetic data creation on model performance and 
privacy preservation. Publicly available repositories such as 
BraTS 2021 (MRI), CheXpert (X-ray), and LIDC-IDRI 
(CT) were selected for their diverse modalities, pathology 
coverage, and clinical relevance [1-3]. Each dataset was 
preprocessed to standardize voxel dimensions, grayscale 
intensity normalization, and artifact removal using 
SimpleITK and NumPy pipelines [4, 5]. Patient identifiers and 
sensitive metadata were stripped to ensure privacy 
compliance. Data augmentation involved flipping, rotation, 
and intensity perturbations before input into generative 
pipelines. 
Generative AI architectures compared in this work included 
StyleGAN2, Variational Autoencoders (VAE), and 
Diffusion Models (Stable Diffusion and DDPM variants) [1, 

6-9]. All networks were implemented in PyTorch 2.1 with 
CUDA acceleration on an NVIDIA A100 GPU (80 GB 
memory). Hyperparameters were optimized via AdamW 
with a learning rate of 1×10⁻⁴, and model convergence was 
tracked using Frechet Inception Distance (FID) and Multi-
scale Structural Similarity Index (MS-SSIM) [7, 8, 10]. A 

privacy-preserving frameworks variant, Differentially 
Private Diffusion (DPDM), was also implemented to assess 
fidelity-privacy trade-offs following current governance 
guidelines [9, 11, 12]. All synthetic data were generated with 
identical resolution to the real images and were further 
validated by two certified radiologists to assess anatomical 
plausibility and lesion preservation [6, 13, 14]. 
 
Methods 
The experimental workflow was divided into three 
sequential phases: (i) training generative models, (ii) 
synthetic data evaluation, and (iii) downstream diagnostic 
task analysis. In the first phase, 70% of the real dataset was 
used to train generative models while retaining 30% for 
downstream evaluation. During model training, convergence 
and sample diversity were monitored using FID, Inception 
Score (IS), and KID metrics [5, 7, 8]. In the second phase, 
synthetic images were evaluated for realism and privacy 
using a three-dimensional “Fidelity-Utility-Privacy (FUP)” 
scorecard [12, 13]. This composite score integrates FID 
(fidelity), classification accuracy gain (utility), and 
differential identifiability (privacy), as proposed in recent 
medical AI governance frameworks [9, 12]. 
In the final phase, hybrid datasets (real + synthetic) and 
real-only datasets were used to train baseline diagnostic 
classifiers (ResNet-50, UNet, and Swin Transformer 
architectures). Performance metrics—accuracy, precision, 
recall, and Dice coefficient—were statistically analyzed 
using paired t-tests with p < 0.05 significance threshold [4, 6, 

8, 10, 15]. Cross-site generalization was validated using 
external hospital data not seen during training. All analyses 
followed reproducibility and ethical data-handling standards 
outlined in prior systematic reviews on generative AI in 
medicine [1, 4, 9, 12-15]. 
 
Results 
 

Table 1: Synthesis quality across models and modalities (lower 
FID and higher MS-SSIM/IS are better) [1-6, 10, 11, 14]. 

 

Modality Model FID (↓) MS-SSIM (↑) 

X-ray (CheXpert) VAE 48.2 0.912 

X-ray (CheXpert) StyleGAN2 28.7 0.941 

X-ray (CheXpert) DDPM 16.3 0.962 

X-ray (CheXpert) DP-DDPM 21.2 0.953 

CT (LIDC-IDRI) VAE 52.1 0.892 

CT (LIDC-IDRI) StyleGAN2 31.4 0.934 

 

 
 

Fig 1: DDPM-based synthetic augmentation improves internal task performance over real-only baselines [1, 3-6, 10, 11, 14]. 

https://www.datasciencejournal.net/


Journal of Machine Learning, Data Science and Artificial Intelligence www.datasciencejournal.net 

~ 101 ~ 

Table 2: Downstream performance (internal/external) for real-only vs hybrid training; Δ reports internal gain over real-only [3-6, 10, 11, 14, 15]. 
 

Modality Model Internal (AUC/Dice) External (AUC/Dice) 

MRI (BraTS) DDPM (Dice) 0.864 0.84 

X-ray (CheXpert) DP-DDPM 0.895 0.867 

CT (LIDC-IDRI) DP-DDPM 0.865 0.839 

MRI (BraTS) DP-DDPM (Dice) 0.857 0.834 

 

 
 

Fig 2: Fidelity-Utility-Privacy (FUP) composite score by generative model [5, 7-9, 12, 13, 15]. 

 
Table 3: Privacy metrics and FUP composite (lower is better for MI-AUC, NN similarity, and re-ident risk) [7-9, 12, 13, 15]. 

 

Model Membership Inference AUC (↓) Nearest-Neighbor Cosine (↓) Re-ident Risk (%) (↓) 

VAE 0.54 0.21 0.011 

StyleGAN2 0.55 0.22 0.014 

DDPM 0.52 0.19 0.009 

DP-DDPM 0.5 0.17 0.006 

 

Quantitative synthesis quality 

Across X-ray, CT, and MRI, DDPM achieved the best 

realism/diversity trade-off with FID 16-19 and MS-SSIM 

0.95-0.96, outperforming StyleGAN2 (FID ~29-33) and 

VAE baselines (FID ~48-55), while DP-DDPM incurred a 

modest fidelity drop (FID ~21-24) consistent with privacy 

noise [1, 2, 5, 10, 11, 14] (Table 1). These trends align with recent 

diffusion surveys and medical image-synthesis reviews 

underscoring diffusion’s stability and controllability 

advantages over GANs/VAEs [1, 3, 14]. 

 

Downstream utility 

Hybrid training with DDPM-generated images improved 

internal metrics across all tasks: +0.041 AUC for CheXpert 

X-ray, +0.043 AUC for LIDC-IDRI CT, and +0.043 Dice 

for BraTS MRI segmentation versus real-only (Figure 1; 

Table 2). Gains persisted externally on cross-site data 

(+0.039 AUC, +0.045 AUC, +0.048 Dice, respectively), 

supporting enhanced generalization rather than overfitting [3-

6, 10, 11, 14, 15]. Improvements were significant under paired t-

tests over 5 seeds × 3 folds (p < 0.01) with moderate effect 

sizes (Cohen’s d≈0.52-0.68). Consistent with prior 

evidence, VAE-augmented gains were modest, and 

StyleGAN2 trailed DDPM but exceeded VAE across 

modalities [2-6, 10, 11]. These results echo multi-modality 

synth/augmentation surveys that report the largest utility 

gains when synthetic data targets under-represented 

appearances or rare pathologies [3-6]. 

Privacy and Fidelity-Utility-Privacy (FUP) (FUP) trade-

off 

Membership-inference AUC (↓), nearest-neighbor similarity 

(↓), and empirical re-identification risk (↓) show DP-DDPM 

with the strongest privacy profile (0.50 MI-AUC; 0.17 NN-

cos; 0.6% re-ID) versus non-private DDPM (0.52; 0.19; 

0.9%), indicating that calibrated noise reduces 

memorization leakage with a small fidelity cost [7-9, 13, 15] 

(Table 3). Aggregating metrics into an FUP score (0-100) 

yields: VAE = 63, StyleGAN2 = 74, DDPM = 86, DP-

DDPM = 83, highlighting diffusion’s favorable balance and 

the near-parity of DP-DDPM when privacy is prioritized [5, 

7-9, 12, 13, 15] (Figure 2). These outcomes accord with 

synthetic-data governance work emphasizing explicit 

Fidelity-Utility-Privacy (FUP) scorecards and standardized 

reporting [12, 13]. 

 

Radiologist review and error analysis 

Two certified radiologists rated image plausibility and 

lesion preservation on a 5-point scale. DDPM images 

achieved the highest “clinically plausible” rates (X-ray 93%, 

CT 91%, MRI 90%) versus StyleGAN2 (86-88%) and VAE 

(78-83%), with substantial inter-rater agreement (κ = 0.82). 

Most discrepancies involved boundary blurring in small 

lesions (CT) and low-contrast edema (MRI), consistent with 

known challenges reported for synthesis near subtle 

biomarkers [4-6, 10, 11]. Failure cases decreased under 

conditional DDPM training and pathology-focused priors, in 
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line with best-practice recommendations in recent reviews [1, 

3-5, 14]. 

 

Sensitivity and robustness checks 

Ablations confirmed that (i) matching synthetic resolution to 

native modality resolution, (ii) maintaining strict train-tune-

test disjointness, and (iii) limiting synthetic:real ratios to 

≤2:1 produced the most reliable gains, echoing guidance 

from prior systematic reviews on evaluation rigor and data-

leakage prevention [1, 4, 6-9, 12-15]. Excess synthetic 

oversampling (>3:1) yielded diminishing returns or minor 

regressions on external sets, aligning with reports of 

distributional drift when synthetic prevalence dominates [5, 8, 

9]. 

 

Discussion 

The findings of this research demonstrate that generative AI 

models, particularly diffusion-based models architectures, 

have achieved substantial progress in synthesizing high-

fidelity and privacy-preserving frameworks medical images 

suitable for downstream clinical applications. The consistent 

superiority of DDPM and DP-DDPM models in both 

fidelity metrics (FID < 20, MS-SSIM ≈ 0.95) and diagnostic 

performance gains (ΔAUC/Dice ≈ 0.04) across modalities 

reinforces earlier reviews emphasizing diffusion’s stability 

and fine-grained detail reconstruction capabilities compared 

with GAN or VAE counterparts [1-3, 10, 14]. These results 

support the growing consensus that generative AI can 

mitigate data scarcity and imbalance—two of the most 

pervasive challenges in medical image analysis—without 

compromising clinical plausibility or patient privacy [2, 4-6, 

11]. 

 

Synthetic data fidelity and diagnostic utility 

The quantitative improvement in classifier accuracy and 

segmentation Dice coefficients following the integration of 

synthetic images validates the utility hypothesis (H1) that 

hybrid datasets outperform real-only models in both internal 

and external validations. Similar observations have been 

reported in multi-center studies, where synthetic 

augmentation improved lesion detection sensitivity for 

under-represented disease classes [3, 5, 6, 10]. The gains 

observed here are attributable to improved distribution 

coverage and controlled variability introduced by diffusion-

based models synthesis, which enhances the representational 

diversity of training data [1, 3, 14]. The cross-site robustness 

confirmed by external validation indicates that the benefits 

are not limited to memorized training patterns but extend to 

genuine generalization a critical requirement for clinical 

deployment [4, 5, 8, 15]. 

 

Privacy, governance, and ethical considerations 

In healthcare AI, the balance between data fidelity, utility, 

and privacy remains an ongoing concern [7-9, 12, 13]. The 

present study’s FUP composite analysis affirms that 

privacy-aware synthetic generation (DP-DDPM) can 

meaningfully reduce re-identification risk (≈ 0.6%) while 

retaining diagnostic performance within 2-3% of non-

private diffusion models. These findings align with the 

governance frameworks and scorecard-based evaluations 

proposed for synthetic medical data [12, 13], demonstrating 

that incorporating controlled differential privacy noise need 

not severely degrade downstream task efficacy. By 

quantifying the Fidelity-Utility-Privacy (FUP) trade-off 

through explicit composite metrics, this work contributes to 

establishing reproducible evaluation standards—an aspect 

repeatedly emphasized in recent systematic reviews [7-9, 12, 

13]. 

 

Radiological realism and interpretability 

Radiologist validation further confirms the high clinical 

realism of diffusion-generated images, with over 90% of 

samples rated anatomically plausible across modalities. This 

performance is consistent with prior evidence that diffusion 

models capture fine-grained texture and morphological cues 

better than adversarial frameworks [1, 5, 10, 14]. However, 

minor limitations—such as blurring at lesion boundaries and 

reduced contrast in low-intensity regions echo known 

challenges cited in literature [4, 5, 11]. These weaknesses 

highlight the continued need for pathology-aware 

conditioning, multi-contrast fusion, and structure-preserving 

loss functions to avoid clinical misrepresentation in 

generated datasets. 

 

Implications and future outlook 

The demonstrated synergy between synthetic and real data 

underscores the potential of generative AI in scalable 

medical data augmentation, domain adaptation, and privacy-

conserving model training. Importantly, the adoption of 

FUP-based validation frameworks offers a transparent and 

standardized mechanism for regulatory and ethical 

compliance facilitating clinical translation while 

maintaining trustworthiness [7-9, 12, 13, 15]. Future research 

should extend these findings by exploring multi-modal co-

generation, temporal synthesis for longitudinal data, and 

federated or decentralized training paradigms that integrate 

synthetic data pipelines directly within hospital systems [1, 4, 

6, 8, 9]. Moreover, interpretability-guided evaluation linking 

latent generative representations to anatomical and 

pathological semantics will be essential for ensuring clinical 

safety and regulatory acceptance. 

In summary, this study corroborates the hypothesis that 

diffusion-based models synthetic augmentation enhances 

model performance while maintaining privacy compliance 

and clinical fidelity. By combining rigorous quantitative 

benchmarking, radiologist validation, and FUP-based ethical 

assessment, the research advances a reproducible and 

governance-aligned framework for synthetic data creation in 

medical imaging, consistent with emerging international 

standards [1-15]. 

 

Conclusion 

This study establishes that Generative Artificial Intelligence 

particularly diffusion-based models models represents a 

transformative approach to overcoming data scarcity, 

privacy barriers, and distributional imbalance in medical 

imaging. The consistent improvements in diagnostic 

performance, cross-site robustness, and fidelity achieved 

through DDPM and DP-DDPM architectures underscore 

their capability to generate clinically valid, anatomically 

coherent, and ethically compliant synthetic data. The results 

confirm that hybrid training strategies integrating real and 

synthetic images not only enhance the performance of 

diagnostic and segmentation models but also enable 

scalable, privacy-preserving frameworks data expansion 

across multiple imaging modalities. The ability of 

generative models to simulate underrepresented pathologies, 

maintain fine structural details, and support reproducible 
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model evaluation positions synthetic data as a viable 

complement not a substitute to authentic medical datasets. 

From a governance perspective, the introduction of 

composite evaluation frameworks such as the Fidelity-

Utility-Privacy (FUP) score provides a quantifiable 

benchmark for balancing realism, diagnostic benefit, and 

data protection, thereby advancing ethical adoption in 

healthcare AI ecosystems. 

In practical terms, several recommendations emerge from 

the findings. Hospitals, diagnostic centers, and medical 

researchers should begin to adopt controlled synthetic data 

generation pipelines within their AI development 

workflows, ensuring that the ratio of synthetic to real data 

remains moderate to avoid overfitting or data drift. 

Institutions should implement standardized evaluation 

metrics—such as FID, MS-SSIM, and privacy-risk 

indices—during each synthesis cycle to maintain 

traceability and transparency. Regulatory agencies and 

hospital ethics boards should endorse the integration of 

FUP-based scorecards as part of data governance protocols, 

ensuring that synthetic datasets meet minimum fidelity and 

privacy thresholds before use in clinical model training. 

Developers of medical AI tools should emphasize 

pathology-conditioned synthesis, where generative networks 

are guided by anatomical labels or disease-specific priors to 

preserve critical diagnostic cues. To support long-term 

deployment, multi-institutional collaborations and federated 

frameworks should be encouraged, enabling synthetic data 

exchange without transferring real patient information. 

Furthermore, incorporating radiologist-in-the-loop 

validation, interpretability-driven visualization, and 

automatic bias monitoring can enhance user trust and 

regulatory acceptance. Academic and industry stakeholders 

should collectively establish repositories of benchmark 

synthetic datasets, promoting reproducibility and 

accelerating innovation across modalities. Overall, the 

integration of diffusion-driven synthetic data generation 

backed by standardized evaluation and ethical oversight 

offers a practical, scalable, and privacy-conscious pathway 

toward equitable, data-rich, and trustworthy medical AI 

systems. 
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